How to Perform Multiple T-test in R for Different Variables

plot of chunk multiple-t-test-in-r-multi-panel-boxplots


How to Perform Multiple T-test in R for Different Variables

Prerequisites

# Load required R packages
library(tidyverse)
library(rstatix)
library(ggpubr)
   
# Prepare the data and inspect a random sample of the data
mydata <- iris %>%
  filter(Species != "setosa") %>%
  as_tibble()
mydata %>% sample_n(6)
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>     
## 1          6.4         2.8          5.6         2.1 virginica 
## 2          5.5         2.6          4.4         1.2 versicolor
## 3          6.3         3.4          5.6         2.4 virginica 
## 4          6.9         3.1          5.1         2.3 virginica 
## 5          6.5         2.8          4.6         1.5 versicolor
## 6          6.3         3.3          6           2.5 virginica
# Transform the data into long format
# Put all variables in the same column except `Species`, the grouping variable
mydata.long <- mydata %>%
  pivot_longer(-Species, names_to = "variables", values_to = "value")
mydata.long %>% sample_n(6)
## # A tibble: 6 x 3
##   Species    variables    value
##   <fct>      <chr>        <dbl>
## 1 virginica  Sepal.Length   6.9
## 2 virginica  Sepal.Length   7.6
## 3 versicolor Sepal.Width    3  
## 4 virginica  Petal.Width    2.5
## 5 versicolor Petal.Width    1.3
## 6 virginica  Petal.Width    1.8

Run multiple T-tests

  • Group the data by variables and compare Species groups
  • Adjust the p-values and add significance levels
stat.test <- mydata.long %>%
  group_by(variables) %>%
  t_test(value ~ Species) %>%
  adjust_pvalue(method = "BH") %>%
  add_significance()
stat.test
## # A tibble: 4 x 11
##   variables    .y.   group1     group2       n1    n2 statistic    df        p    p.adj p.adj.signif
##   <chr>        <chr> <chr>      <chr>     <int> <int>     <dbl> <dbl>    <dbl>    <dbl> <chr>       
## 1 Petal.Length value versicolor virginica    50    50    -12.6   95.6 4.90e-22 9.80e-22 ****        
## 2 Petal.Width  value versicolor virginica    50    50    -14.6   89.0 2.11e-25 8.44e-25 ****        
## 3 Sepal.Length value versicolor virginica    50    50     -5.63  94.0 1.87e- 7 2.49e- 7 ****        
## 4 Sepal.Width  value versicolor virginica    50    50     -3.21  97.9 1.82e- 3 1.82e- 3 **

Create multi-panel Boxplots with t-test p-values

# Create the plot
myplot <- ggboxplot(
  mydata.long, x = "Species", y = "value",
  fill = "Species", palette = "npg", legend = "none",
  ggtheme = theme_pubr(border = TRUE)
  ) +
  facet_wrap(~variables)
# Add statistical test p-values
stat.test <- stat.test %>% add_xy_position(x = "Species")
myplot + stat_pvalue_manual(stat.test, label = "p.adj.signif")

plot of chunk multiple-t-test-in-r-multi-panel-boxplots

Create individual Box plots with t-test p-values

# Group the data by variables and do a graph for each variable
graphs <- mydata.long %>%
  group_by(variables) %>%
  doo(
    ~ggboxplot(
      data =., x = "Species", y = "value",
      fill = "Species", palette = "npg", legend = "none",
      ggtheme = theme_pubr()
      ), 
    result = "plots"
  )
graphs
## # A tibble: 4 x 2
##   variables    plots 
##   <chr>        <list>
## 1 Petal.Length <gg>  
## 2 Petal.Width  <gg>  
## 3 Sepal.Length <gg>  
## 4 Sepal.Width  <gg>
# Add statitistical tests to each corresponding plot
variables <- graphs$variables
for(i in 1:length(variables)){
  graph.i <- graphs$plots[[i]] + 
    labs(title = variables[i]) +
    stat_pvalue_manual(stat.test[i, ], label = "p.adj.signif")
  print(graph.i)
}

plot of chunk multiple-t-test-in-r-individual-boxplotplot of chunk multiple-t-test-in-r-individual-boxplotplot of chunk multiple-t-test-in-r-individual-boxplotplot of chunk multiple-t-test-in-r-individual-boxplot



Version: Français





Comments ( 4 )

  • Jay

    # data
    example.df <- data.frame(
    genotype = sample(c("A", "B","C","D"), 50, replace = TRUE),
    oxygen = sample(c("Yes", "No"), 50, replace = TRUE),
    value1 = rnorm(50, 100, 5), value2=rnorm(50, 10,5), value3 = rnorm (50, 25, 5))

    # plot
    ggboxplot(example.df, x = "genotype", y = "value1", color = "oxygen", bxp.errorbar = TRUE, palette = "jco")

    # stat test
    stat.test %
    group_by(oxygen) %>%
    dunn_test(value1~genotype) %>%
    adjust_pvalue(method = “bonferroni”) %>%
    add_significance(“p.adj”)

    If I wanted to use dunn test to perform all comparisons between the genotypes grouped by oxygen, for all numeric variables and generate plots with significance values for only certain comparisons, how could I accomplish that?

    Thanks

  • Andi

    Thanks for the brilliant tutorial. With my data I run into the problem of the y axes scales which vary strongly between variables and I cannot figure out how to adjust them. Can you give me a hint?

  • Cheoma Frongia

    Thanks a lot!! Simple and clear to run 🙂 It works perfectly

  • Ethan

    Hi, this is a very good script! I use this but cannot modify the axis lebel, can anyone tell me where to do that?

Give a comment

Want to post an issue with R? If yes, please make sure you have read this: How to Include Reproducible R Script Examples in Datanovia Comments