You will learn how to plot all variables in a data frame using the ggplot2 R package.
Prerequisites
Load required R package and set the default theme to theme_minimal()
:
library(tidyverse)
theme_set(
theme_minimal() +
theme(legend.position = "top")
)
Data preparation
- Demo data:
head(iris, 3)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
- Select numeric columns and gather them into key-value pairs:
iris.gathered <- iris %>%
as_data_frame() %>%
select_if(is.numeric) %>%
gather(key = "variable", value = "value")
head(iris.gathered, 3)
## # A tibble: 3 x 2
## variable value
## <chr> <dbl>
## 1 Sepal.Length 5.1
## 2 Sepal.Length 4.9
## 3 Sepal.Length 4.7
Visualization
Plot the density distribution of each variable:
ggplot(iris.gathered, aes(value)) +
geom_density() +
facet_wrap(~variable)
Recommended for you
This section contains best data science and self-development resources to help you on your path.
Books - Data Science
Our Books
- Practical Guide to Cluster Analysis in R by A. Kassambara (Datanovia)
- Practical Guide To Principal Component Methods in R by A. Kassambara (Datanovia)
- Machine Learning Essentials: Practical Guide in R by A. Kassambara (Datanovia)
- R Graphics Essentials for Great Data Visualization by A. Kassambara (Datanovia)
- GGPlot2 Essentials for Great Data Visualization in R by A. Kassambara (Datanovia)
- Network Analysis and Visualization in R by A. Kassambara (Datanovia)
- Practical Statistics in R for Comparing Groups: Numerical Variables by A. Kassambara (Datanovia)
- Inter-Rater Reliability Essentials: Practical Guide in R by A. Kassambara (Datanovia)
Others
- R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham & Garrett Grolemund
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurelien Géron
- Practical Statistics for Data Scientists: 50 Essential Concepts by Peter Bruce & Andrew Bruce
- Hands-On Programming with R: Write Your Own Functions And Simulations by Garrett Grolemund & Hadley Wickham
- An Introduction to Statistical Learning: with Applications in R by Gareth James et al.
- Deep Learning with R by François Chollet & J.J. Allaire
- Deep Learning with Python by François Chollet
No Comments