This article describes how to create an interactive treemap in R using the highcharter R package.
Contents:
Prerequisites
# Load required R packages
library(tidyverse)
library(highcharter)
# Set highcharter options
options(highcharter.theme = hc_theme_smpl(tooltip = list(valueDecimals = 2)))
Data preparation
# Load a demo data
data("mpg", package = "ggplot2")
# Summary table
summary.table <- mpg %>%
group_by(manufacturer) %>%
summarise(
nb_cars = n(),
nb_model = length(unique(model))
) %>%
arrange(-nb_cars, -nb_model)
summary.table
## # A tibble: 15 x 3
## manufacturer nb_cars nb_model
## <chr> <int> <int>
## 1 dodge 37 4
## 2 toyota 34 6
## 3 volkswagen 27 4
## 4 ford 25 4
## 5 chevrolet 19 4
## 6 audi 18 3
## # … with 9 more rows
Basic treemaps
hc <- summary.table %>%
hchart(
"treemap",
hcaes(x = manufacturer, value = nb_cars, color = nb_model)
)
hc
Change colors
hc <- summary.table %>%
hchart(
"treemap",
hcaes(x = manufacturer, value = nb_cars, color = nb_model)
) %>%
hc_colorAxis(stops = color_stops(colors = viridis::inferno(10)))
hc
Recommended for you
This section contains best data science and self-development resources to help you on your path.
Books - Data Science
Our Books
- Practical Guide to Cluster Analysis in R by A. Kassambara (Datanovia)
- Practical Guide To Principal Component Methods in R by A. Kassambara (Datanovia)
- Machine Learning Essentials: Practical Guide in R by A. Kassambara (Datanovia)
- R Graphics Essentials for Great Data Visualization by A. Kassambara (Datanovia)
- GGPlot2 Essentials for Great Data Visualization in R by A. Kassambara (Datanovia)
- Network Analysis and Visualization in R by A. Kassambara (Datanovia)
- Practical Statistics in R for Comparing Groups: Numerical Variables by A. Kassambara (Datanovia)
- Inter-Rater Reliability Essentials: Practical Guide in R by A. Kassambara (Datanovia)
Others
- R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham & Garrett Grolemund
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurelien Géron
- Practical Statistics for Data Scientists: 50 Essential Concepts by Peter Bruce & Andrew Bruce
- Hands-On Programming with R: Write Your Own Functions And Simulations by Garrett Grolemund & Hadley Wickham
- An Introduction to Statistical Learning: with Applications in R by Gareth James et al.
- Deep Learning with R by François Chollet & J.J. Allaire
- Deep Learning with Python by François Chollet
Version: Français
No Comments