R vs. Python: A Comprehensive Code Translation Guide

Bridging the Gap Between R and Python for Data Science

This comprehensive guide provides a side-by-side reference for translating common R code into Python. It covers general syntax, dataframe operations, object types, and other key differences, along with detailed comparisons of equivalent libraries and real-world scenarios to help you transition smoothly between these languages.

Programming
Author
Affiliation
Published

February 13, 2024

Modified

March 11, 2025

Keywords

R vs Python syntax, code translation guide, transition from R to Python, data science R Python

Introduction

Transitioning between R and Python is a common challenge for data scientists and programmers. Both languages offer powerful tools for data analysis, yet they differ in syntax, idioms, and underlying paradigms. This guide provides a side-by-side reference for translating common R code into Python. We cover general operations, dataframe manipulations, object types, and other key differences. Additionally, we include detailed comparisons of equivalent libraries and real-world scenarios to illustrate how these translations work in practical projects.



1. General Syntax and Operations

Below is a summary table that presents common R expressions alongside their Python equivalents:

R Code Python Code
new_function <- function(a, b=5) { return(a+b) } def new_function(a, b=5): return a+b
for (val in c(1,3,5)) { print(val) } for val in [1,3,5]: print(val)
a <- c(1,3,5,7) a = [1,3,5,7]
a <- c(3:9) a = list(range(3,9))
class(a) type(a)
a <- 5 a = 5
a^2 a**2
a%%5 a % 5
a & b a and b
a | b a or b
rev(a) a[::-1]
a %*% b a @ b
paste("one", "two", "three", sep="") 'one' + 'two' + 'three'
substr("hello", 1, 4) 'hello'[:4]
strsplit('foo,bar,baz', ',') 'foo,bar,baz'.split(',')
paste(c('foo', 'bar', 'baz'), collapse=',') ','.join(['foo', 'bar', 'baz'])
gsub("(^[\\n\\t ]+|[\\n\\t ]+$)", "", " foo ") ' foo '.strip()
sprintf("%10s", "lorem") 'lorem'.rjust(10)
paste("value: ", toString("8")) 'value: ' + str(8)
toupper("foo") 'foo'.upper()
nchar("hello") len("hello")
substr("hello", 1, 1) "hello"[0]
a = rbind(c(1,2,3), c('a','b','c')) list(zip([1,2,3], ['a','b','c']))
d = list(n=10, avg=3.7, sd=0.4) {'n': 10, 'avg': 3.7, 'sd': 0.4}
quit() exit()

2. Dataframe Operations

Below is a table comparing common dataframe operations in R and Python:

R Code Python Code
head(df) df.head()
tail(df) df.tail()
nrow(df) df.shape[0] or len(df)
ncol(df) df.shape[1] or len(df.columns)
df$col_name df['col_name'] or df.col_name
summary(df) df.describe()
df %>% arrange(c1, desc(c2)) df.sort_values(by=['c1','c2'], ascending=[True, False])
df %>% rename(new_col = old_col) df.rename(columns={'old_col': 'new_col'})
df$smoker <- mapvalues(df$smoker, from=c('yes','no'), to=c(0,1)) df['smoker'] = df['smoker'].map({'yes': 0, 'no': 1})
df$c1 <- as.character(df$c1) df['c1'] = df['c1'].astype(str)
unique(df$c1) df['col_name'].unique()
length(unique(df$c1)) len(df['col_name'].unique())
max(df$c1, na.rm=TRUE) df['col_name'].max()
df$c1[is.na(df$c1)] <- 0 df['col_name'] = df['col_name'].fillna(0)
df <- data.frame(col_a=c('a','b','c'), col_b=c(1,2,3)) df = pd.DataFrame({'col_a': ['a','b','c'], 'col_b': [1,2,3]})
df <- read.csv("input.csv", header=TRUE, na.strings=c("","NA"), sep=",") df = pd.read_csv("input.csv")
write.csv(df, "output.csv", row.names=FALSE) df.to_csv("output.csv", index=False)
df[c(4:6)] df.iloc[:, 3:6]
mutate(df, c=a-b) df.assign(c=df['a']-df['b'])
distinct(select(df, col1)) df[['col1']].drop_duplicates()

3. Object Types

A quick reference for object types in R and Python:

R Object Python Object
character string (str)
integer integer (int)
logical boolean (bool)
numeric float
complex complex
Single-element vector Scalar
Multi-element vector List
List (mixed types) Tuple
Named list Dictionary (dict)
Matrix/Array numpy ndarray
NULL, TRUE, FALSE None, True, False
Inf inf
NaN nan

4. Other Key Differences

  • Assignment Operators:
    R uses <- while Python uses =.

  • Indexing:
    R indices start at 1; Python indices start at 0.

  • Error Handling:
    R uses tryCatch(), Python uses try...except.

  • Piping:
    R uses %>% for chaining operations; Python relies on method chaining or additional libraries.

  • Naming Conventions:
    R often uses dots in variable names (e.g., var.name), whereas Python uses underscores (e.g., var_name).

5. Library Comparisons

For those transitioning from R to Python, it’s important to know which libraries in Python provide similar functionalities to your favorite R packages. Here’s a quick comparison:

  • Data Manipulation:
    • R: dplyr
    • Python: pandas (with alternatives like polars, tidypolars, datar, siuba, and pyjanitor)
  • Data Visualization:
    • R: ggplot2
    • Python: lets-plot, plotnine, matplotlib, Seaborn
  • Statistical Modeling:
    • R: tidymodels, caret
    • Python: scikit-learn, statsmodels
  • Reporting:
    • R: knitr, r markdown
    • Python: Quarto, Jupyter Notebooks
  • Web Scraping:
    • R: rvest
    • Python: BeautifulSoup
  • Testing:
    • R: testthat
    • Python: pytest

6. Real-World Scenarios

Case Study: Data Analysis Pipeline

Imagine you have a dataset for customer reviews. In R, you might use the tidyverse to clean and visualize the data, while in Python you’d use pandas and matplotlib/Seaborn. Consider the following scenario:

  • R Workflow:
    • Import data using readr.
    • Clean and transform the data using dplyr.
    • Visualize review trends using ggplot2.
    • Build a predictive model using tidymodels.
  • Python Workflow:
    • Import data with pandas.
    • Clean and transform using pandas (or dplyr-like libraries such as siuba).
    • Visualize trends with matplotlib/Seaborn or lets-plot.
    • Build a predictive model using scikit-learn.

In both cases, the steps are similar. This scenario demonstrates how core data science tasks can be performed in either language, highlighting the ease of switching contexts while leveraging familiar methods.

Practical Example

For example, if you are analyzing customer sentiment, you might:

  • R: Use dplyr to filter positive reviews and ggplot2 to create a bar chart of sentiment scores.
  • Python: Use pandas to filter the data and Seaborn to create a similar bar chart.

These examples help illustrate that the key differences often lie in syntax rather than in the underlying concepts.

Conclusion

This guide serves as a comprehensive reference for translating code between R and Python. By covering general syntax, dataframe operations, object types, library comparisons, and real-world scenarios, you gain a holistic view of the differences and similarities between these two powerful languages. Whether you’re transitioning from R to Python or working in a multi-language environment, this guide will help you navigate the journey with confidence.

Further Reading

Happy coding, and enjoy bridging the gap between R and Python!

References

Back to top

Reuse

Citation

BibTeX citation:
@online{kassambara2024,
  author = {Kassambara, Alboukadel},
  title = {R Vs. {Python:} {A} {Comprehensive} {Code} {Translation}
    {Guide}},
  date = {2024-02-13},
  url = {https://www.datanovia.com/learn/programming/transition/r-vs-python-code-translations.html},
  langid = {en}
}
For attribution, please cite this work as:
Kassambara, Alboukadel. 2024. “R Vs. Python: A Comprehensive Code Translation Guide.” February 13, 2024. https://www.datanovia.com/learn/programming/transition/r-vs-python-code-translations.html.